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Abstract:

The cascade correlation based neural network learning algorithm has drawn a lot of attention
because of its enhanced learning capability. It overcomes significant drawbacks of error
backpropagation(EBP)in that (1) it isno longer constrained o a fixed architecture via a preallocation
of the number of hidden units, (2) it features selective weight [raining as opposed to EBP’ s global
weight training. In addition, from a hardware implementation perspective, net works based on the
cascade correlation algorithm require sign ificantly less complex synaptic weight circuitry than those
required by EBP.

We present a mathematical analysis for a new scheme termed Cascade Error Projection (CEP)
and show tha( (he same is also applicable to Cascade Correlation. In CEP, it is shown that there
exists, at least, a non zero set of weights which is calculated from affine space and thai convergence is
assured because the net work satisfies the Liapunov criteria, in added hidden units domain rather than
in the time domain. The CEP technique is faster to execute because part of the weights are
deterministically obtained, and the learning of weights from the inputs 1o each added hidden unir is
performed asasingle layer perceptron learning with previously obtained weights frozen. In addition,
the initial weights start out with a zero value for every newly added unit, and a single hidden unit is

applied instead of using a pool of candidate hidden units as for cascade correlation, Thereby,




hardware implementation is also simplified. Furthermore, rhis analysis allows us to predict the
suitability of other merhods (such as the conjugate gradient descent and Newton's second order
method) which will be good candidates for the learning technique. The choice of learning technique
depends on the constraints of the problems (e.g., speed, perfor mance, and hardware implementation);

one technique may be nwre suitable than some of the others. Moreover, for a discrete weight space,

the theoretical analysis presents the capability of Jearning with limited eight 1 quantization. Finally, 5-

to 8-hit parity problems are investigated; the simulation results demonstrate that only three hidden
units are required to learn the 5-bit parity problem with no error and the 6-bit parity problem with only

oneerror, four hidden units are required to learn 7-bit parity proplem with no error and8-bit problem

with only one error. All simulations were done with a fixed 100 epoch iteration s for each single-layer
perceptron (each single hidden unit) learning. In addition, with 3- to 4-bit weight resolution
requirement it is demonstrated tha: this technique would be capable of learning reliably up to 8-bit

parity problems.

I-Introduction

There are many ill-defined problems in pattern recognition, classification, vision,
and speech recognition which need to be solved in real time [Duong et al. 1992, 1994,
Boser et al. 1991]. These problems are too complex to be solved by a linear technique;
the most suitable approach would be a non-linear technique, such as a neural network.
An overview of general learning theory in neural network has been presented by
Amari(1990), and a neural network survey has been summarized by Hecht-
Nielsen(1 989). Currently, there are several neuromophic learning paradigms reported in
literature [Cohen and Grossberg 1983, Rumelhart and McClelland 1986, Kosko 1988,

Hinton et al. 1984, Albus 1971, Hopfield 1982, Widrow 1962, Fukushima 1982,




Rosenblatt 1958, Kohonen 1989, Jackson 1988, Falhman and Lebiere 1990, Duong et
al. 1995] and a majority of them are supervised learning techniques.  Error
Backpropagation |learning algorithm(EBP)[ Rumelhardt and McClelland, 1986] is a very
popular supervised learning technique. One of the most attractive features of the neural
network is a massively parallel processing that offers tremendous speed only when
implemented in hardware. From the hardware point of view, there are a few learning
algorithms that are more practical than others [Tawel 1993]. Resource allocation [Platt
199 1], cascade correlation (CC) [Falhman and Lebiere 19901, and cascade
backpropagation (CBP) [Duong et al. 1995] are among these practical learning
algorithms. Generally, neura network approaches in hardware face two main obstacles:
(2) difficulty of the network convergence due to the learning algorithm itself and the
limited precision of the devices; (2) the very high cost of implementing hardware to truly
mimic the synapse and neuron transfer functions dictated by the algorithm.
Furthermore, the convergence and the implementable hardware have a mutual
correlation to each other; for example, the convergence of the learning network depends
on the weight resolution available in synapse [Hollis et al. 1990, Hoehfeld and Fahlman
1992], and the cost of implementation of each bit in synapse grows, at least doubly, in
silicon area, power, and connectivity [Eberhardtet al 1989, Duong et al. 1992].
Avoidance of these obstacles requires a learning algorithm that has a reliable learning
convergence (even with low weight quantization) and is ssmple to implement in VLS
hardware. There have been a few attempts to adapt such an algorithm to hardware. A

weight perturbation [Jabri and Flower 1992, Alspector et a. 1993, Cauwenberghs 1993]




approach has been attempted. The technique of cascade correlation has shown
encouraging results in learning via simulation; this method was shown to be reliable and
fast in learning. However, it required at least a 12-bit weight resolution in synapse. A
probabilistic technique [Hoehfeld and Fahliman 1992] has been introduced to augment
the cascade correlation to reduce the weight resolution requirement, but it is difficult and
the hardware implementation is complex by their proposed scheme. Another approach
is the cascade backpropagation (CBP)[Duong et al. 1995] that introduces a dynamical
step size adjustment to overcome the hardware problem. In CBP approach, it was
shown that the network is able to learn a relatively complex problem (6-bit parity) with
only 5-bit weight-resolution synapse. However, learning, which is conducted in two
layers by an iteration technique, is still slow and requites additional hardware when
implemented.

Therefore, a better learning algorithm is required with a concrete mathematical
foundation, as well as with a less costl y electronic imiplementation. In this paper, the
cascade error projection (CEP) learning algorithm is presented. It offers a simple
learning method using a one-layer perception approach and a deterministic calculation
for the other layer. Such a simple procedure offers a very fast, reliable, and hardware
implementable learning algorithm. In addition, the hardware implementation is not only
tolerant of 3- and 4-bit weight resolution in synapse, but the learning technique which is
robustly implementable in VLS| hardware is itself inherently simple. Furthermore, a
detailed mathematical analysis of CEP is developed to guarantee the learning capability.

To validate the new learning theory of CEP, simulations for 5- to 8-bit parity problems



are investigated with a variation in starting from a limited weight quantizations (3- to 6-
bit weight resolution) and weight quantization of a floating point machine (32-bit for

float and 64-bit for double precision).

In CC, the combination of supervised learning and cascading architecture shows
that it is potentially better for implementation in hardware than EBP in terms of its
learning capability [Hoehfeld and Fahlman 1992]. CBP is introduced to overcome the
difficulty of EBP [Duong et al. 1995], with its gradient-descent technique of learning
and independently training each layer. It alows one to dynamically change the stepsize
of the synapse weight quantization to compensate for the low weight resolution synapse
[Duong et a. 1995]. The cascade error projection learning algorithm is formed by
adapting the cascading architecture from CC, the independent learning layer with a
dynamical step size in CBP. In addition, a formal analysis is presented in the paper to

integrate the three features.

The network architecture is shown in Figure 1. Shaded squares and circles indicate frozen
weights; a square indicates calculated weights, and a circle indicates weights adapted by
iterative learning procedure. The analysis will be based only on the set of weights that is
connected to the new hidden unit (n+1), n being the number of hidden units already added.
In this case, only the blank squares and circles will be require to be determined to improve

the energy level.
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Figure 1. The architecture of cascade error projection includes inputs,
hidden units, and output units. The shaded circles or squares indicate
the learned or calculated weight set which arc computed and frozen. A
circle indicates that learning is applied to obtain the weight sct using
perceptron learning, and a square indicates that the weight set is
delerministically calculated.

This paper is designed as follows: Section 2 is an analysis of cascading
architecture; adifferential energy function between layer n and (n+1) isintroduced. This
function contains two sets of variables which are (1) the set of weights between the
input (including previous expanded inputs) and the current hidden unit, namely Wa; (2)
the set of weights between the current hidden unit and the output unit, namely W,,. The
two sets of variables for the differential energy function are treated sequentially (not

simultaneously). The differential energy function is maximized with respect to W,, to




obtain maxu.(AE). However, the maxw..(AE) is a function of Wi.Inthissection, we
show that there exists a solution set W, which is obtained from affine space. This
solution set W, guarantees that the network is reducing (or at least maintaining) the

present energy level when the new hidden unit is added. In this case, we can conclude
that the network converges in the Liapunov’'s sense. From this evidence, one can
conclude that the solution which is obtained in non-linear space by learning techniques
(gradient descent, conjugate gradient, correlation, or Newton's second order) may be
the better one. This analysis ensures the convergence of learning in a non-linear space.
In section 3, we present the convergence analysis as a function of synaptic resolution. It
can be visualized that the learning trajectory is fairly smooth for high resolution synaptic
weights, but is courser as the resolution is decreased, causing bigger jumps in the
learning tragjectory. Our analysis bears out that the necessary condition for the network
to converge with limited weight resolution is the requirement of additional hidden units
(compared with the number of hidden units in the floating point machine weight
resolution). In section 4, the cascade error projection learning algorithm is proposed.
This algorithm has two objectives. (a) consistency with the theoretical analysis and (b)
easy implementation in silicon. Section 5 is used to validate the theory through the
simulations. The problems that are used to validate the CEP are 5- to 8-bit parity
problems in a floating point machine weight resolution, and limited weight resolution is
studied. Discussions and suggestions are also included. Section 6 provides the

conclusion of our analysis along with future research directions.



11. Mathematical Analysis in a Continuous Weight Space

Assume that the network contains n hidden units (see Fig. 2) and the learning
cannot be improved any further in energy level. At this point, the new hidden unit (n+1)

is added to the network.

a) Theorv of Cascade Error Projection

Let E be an input space and Ec[~1,1]¥*', Y be an output space and ¥<[-1,1]", and Q
be a hidden output space and Q2 c[-1, 1]". Let us define

ﬁ' (q) :[_1,1]N+qx9’{N+q _—")[—1’1]

fo :[—],l]NwﬂxgtNﬂl“’—y /
N is the dimension of the input space, q is the dimension of the expanded input space (q
is dynamically changed and is based on the learning requirement), and m is the dimension

of the output space. Finally, f isasigmoidal transfer function which is defined:
ex _e--x
el + C_H X

fx)=

The used notations are defined as follows:

ef=12—0? (n) denotes the error of output element o and training pattern p with target
t and actual output o(n). n indicates the output which has n hidden units in the network.
£2(n) = f? denotes the output transfer function derivative with respect to net, of the

output element o and the training pattern p.



Ji¥ (n+1) denotes the function of hidden unit n+1and training pattern p.

X*denotes the input pattern p and |X | denotes the Euclidean distance of vector X.
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Figure 2 Assume that there are (n+1) hidden units in the network and
the blank squares and circles arc the weight components which
determine the weight values by learning or calculating.

Theorem 1. |n cascading architecture, the maximum energy reduction between hidden

unit n and (n+)) with respect to w,,, is

S s £ (n 4 )

p=1 o=1

Proof:

The energy function of the network can be defined as




P P

P m m
B- 35 =3 5.0 -3 3 )
p=1

p=1 o0==1 p=1 o=1

Let ¢7 be atarget output of unit o and input pattern p, and the output of unit o is given:

n+l

ol = f(XPY'W, DL (Dw,, ()
j=1

with
[1 ] ~
’ )]
Xy
X! = ; X (n+1) =|. ;
x| | fF(n+1)

X,? (dimension (N+1)xI) denotes the original input vector of pattern p,and X7 (n + 1)
(dimension (n+1)x1) denotes an expanded input vector with (n+17) hidden units.

and let

i"(n+1)= l:X”(n+ n ‘

then
T @O W,G) =17 +1)
£iF(j +1) denotes the output of hidden unit j+7 with the input pattern p.

Let E(n) and E(n+ 1) be an energy level of the network with n, and n+17 hidden units
respectively. The desire in learning is to reduce the energy from E(n) to E(n+1) as

much as possible (ignoring the overlearning phenomenon). The ideal case would be

10




max{E(n) — E(n +- 1)) = max AE

From Appendix A, we have

m P P
AE = é{—wfoz:‘;[f'g L+ DF 42w, Y [e2f'2 fP(n+ 1) (1)

p=1

The sufficient condition for equation (1) to be maximum with respect tow,, is

P
P o Yef' L fi(n+1)
maxwi,(AE) = 22{55 f'rfrn+1) when w, =4 ;l )
petest U577 £+ DF
p=1

Theorem 2: There exists a subspace of weight space S ¢ R ¥*"of which Wi(n+1) € Shas
the new energy level E(n+1), such that E(n) -E(n+1)2 0.

m

From equation (2), we have

P m
AE= (.Y [ (n+ Dl ~o?)

p=l o=]

Randomly pick a set of weights, Wi(n+1), and validate all the training patterns. If

AE >0, then the reduction energy of the network is satisfied, If not, change the polarity
of w, (n+1), and since the transfer function is an odd function, AE will change in sign,

which should satisfy the reduction energy.

Theorem 3: The projection of the error surface into the output of a new hidden unit

always guarantees that there exists a weight subspace of the learning weight space,

11



which is obtained from affine space. These cascading sequential subspaces ensure that

the network convergesin Liapunov’s sense.

Proof:
lLet
P_l " 11 1 1
t, o - -
m;fo{o a} (pl
| S T =1...
.................. I,
_l_zm:fvl’ {tl’ __oP _(pP
L7 o=1 N

Then, T e[-1,11".

and

F(n+1) =]

We can rewrite equation (2) in amatrix form as follows:
AE=mI'"F,(n+1)

let

12



F,(n+1)=T 3)
but
F(n+1)=FUW,(n+1) 4

with

o
From (3) and (4), let W, (n + 1) be a solution in affine space; then we have
W,(n+1)=F" (I ()
Findly, the solution is
W,(n+)=1"F" (I
1" isthe pseudo-inverse of 7 [Haykin].
The existence of W, (n + 1) depends on the non-zero column matrix 7* F,™ (") , and the

rank of I is at least 1 because of the non-linear combination of al previous dimensions
(i=1,n). At the same time, the error surface till exists (if it is zero, then the energy is
already zero). Therefore, the existence of W, (n + 1) is amost always guaranteed. As

shown, the existence in affine space is demonstrated; however, we are interested in non-

linear space.

From (3) and (5), apply the mean value theorem:

13



T—F'(n+1) = F', (OF )= IW, (n+1))

with
“f'h c")0..0
@ [ i e e @y Wiy | FsSrren)
0.07", (")

Note that the dimension of F', (C) is PxP.

Let

I = F,UW,(n+1)=|.

¢ ]

In other words, we have

We aso imply that
r-rl=r, OF @ F.0C° (6)

Expanding equation (6), it is

14




[ —r *2 F', (O)F )= 2 F, (O)F Q)Y {F . (OF, )
+ FLOF T

Let

s=|f = |F, ©F @ +2(F, ©F @Y (F+ OF" 1)
-|F©F @f

and $ =20

The inequality (9) is proved in Appendix B

From (8) and (9), it is obtained:

T + 1% "< o

In other words, it is

Fl(n+1)°
TTF (n+ 1) 2 = 5

and we also have

. . 2
I +iF (n+1)
I'F (0 + )< iil—"z("—l

Findly, we have

(8)



I + F o+

lh‘(n+1)2 Tt
—  ~ <I'F +-D<
2 s 2 “

(o)

2

E (n+1) _ o
>0, because the rank of | is at least 1 (it is noted that

We should note that 2 >

the output of hidden unit n is non-linear combination of the all previous output hidden

units and the original inputs and this output of hidden unit n ensurestherank of | at least 1

for itself). However, the inverse of sigmoidal function is used to obtain the W, (n + 1), s0

it is possible to encounter the null space in affine space. Therefore, the precise inequality

o Fr(nt 1)2
s ————20

From (1 O), there exists at least one solution obtained by pseudo-inverse technique in
affine space. This solution also indicates the lower bound of reduction energy in the
hidden unit (n+1). Therefore, in non-linear space it can be convinced there always exists

a solution space when the error surface is projected to the new hidden unit for learning

. To obtain the maximum

fF (1
2

and the lower bound energy reduction

energy reduction, a straight approach is to obtain the most matching between F, (n + 1)

and 1", one can use gradient descent, maximum correlation, covariance, Newton's
second order method, or conjugate gradient techniques.

Finally, VE(n) < 0, with VE(n) = E(n + 1) -- E(n).
In conclusion, we have shown that there exists aweight set W, (n+ 1) whichis

obtained by the pseudo-inverse technique, and this weight set guarantees a reduction of

16



or remaining the same of energy with a new added hidden unit (n+1). From the network
viewpoint, the energy decreases or remains the same when the number of hidden units

increases; therefore the net work converges (in Liapunov’s sense).

b)_Discussion:

Up to this point, it is possible to discuss the learning algorithms by S. Fahlman
(cascade correlation) and T. Duong (cascade error projection). In this analysis, it is
clearly shown that the network converges when the error surface is projected to the
current hidden unit. To find the weight set between the input units (original inputs and
expanded inputs) and the current hidden unit depends on the objective which constraints
to select the learning technique (e.qg., if it is desired to have a software-based learning,
then good candidates might be Newton’s second o1 der, the maximum correlation or
covariance technique, etc.) [Duong 1995]. As it is shown, the weight set can be
obtained directly from affine space by using the pseudo-inverse technique, which has
been thoroughly studied [Haykin 1991]. In addition, the mapping array technique also
offers a well-defined methodology [Kung 1988] to solve a singular-value decomposition
problem in the digital domain. However, in our approach, we are interested in a non-
linear solution space in which the solution weight set can be obtained directly from a
learning technique using analog/digital hardware. This learning approach will offer a

better solution from both the theoretical and implementable point of view. First, the

17




solution which is obtained in non-linear space has compactness of the network and
smoothness of the transformation because the data distribution is always in the non-
linear domain. Second, it is hard to solve a singular-valued decomposition problem in a
linear hardware network, even though the solution is deterministically defined, but the
cost of the complicated hardware required by the network may exceed the available
resources.

As stated in the arguments above, we believe the solution in non-linear space and
the analog/digital hardware approach are more favorable to having an efficient, compact
network and to providing simpler hardware implementation. Therefore, we have used
theorem 3 as strong evidence to focus our attention on alearning technique to obtain the
appropriate weight set for a particular use. The proposed learning algorithm CEP is
more feasible for hardware (low quantization, fast learning, and simple design) [Duong
1995], Also from the theory, it is feasible to use the. conjugate gradient technique, or
even better to use Newton’s second order method to get a good software learning
approach [Duong 1995]. However, the goal of our present analysis is to select the

learning algorithm that best satisfies the given constraints.

[11. Math ical Analysis with Limi Weight Space

Theorem 4: In cascading architecture, the convergence of the network that is achieved

in a high weight quantization space can also be obtained in limited weight quantization

space (B is weight bit quantization available) such that:

18




B2 < § < P2 and OfS) = 0;

The network with the limited weight quantization space is aimost always converged in

mean sguare sense which is

O(F (n+1) "} < 20(I"E (n + 1)

O is a statistical mean operator.

B isadynamical coefficient.

Proof:

As proved above, the network converges in Liapunov’s sense. In this section we aso
want to show that the CEP learning approach has the capability to learn in the discrete
limited quantization space. The requirement for this learning capability is using the
dynamical step size that can be obtained from the previous energy level. In Figure 2, with

anew hidden unit (n+17), the output 0 and pattern input p can be expressed:
o!(n+1) = fnet? +w,fF(n+1) (11)
In equation (11), wno is calculated; hence, it has very little effect on the learning

capability, and it isignored. However, The main focus of study in the learning capability

of the network isW,, . It can be expressed as follows:

19



W, =W/ih+8

and

—stepsi steps .
stepsize(n+ 1) &< =Lize(n+1) with stepsize(n +1) = 327*

2

when W/,.,, is aweight vector in discrete limited weight space, and & is a noise vector that

may come from the round-off technique.

We have

P+ = £, (W, (n+1)+8)) (12)

If & is sufficiently small, equation (12) can be

P+ = f,i"W,) + f, (i("W,)i"8

Let v°=ff(n+1)— f;” (n + 1) be an error between the hidden output with infinite

weight resolution and the hidden output with limited weight resolution of hidden unit

(n+1). Then,

vf = F, (iPW,)i"d

From the previous proof, we obtain

20



Bt e (13)

Let f, ("W,)=f'*

] _f hi‘S -

From (13), we can rewrite
Frarn+Y <o (Fm+D+Y)
Expanded, we have
| 0 +2Y7Fy e )+ Y] S2TTF (et D4 TTY) (14)
Let us introduce the statistical mean operator ©. In the process of obtaining the weight
set WM, the learning is repeatedly applied. This technique can be viewed as a statistical

mean process, then (14) becomes

OF (n+ 1)+ 2L Y E (n+ D) +|Y[ ) < 20(TTF) (n+ D +T7TY) (15)

21




But, Y is independent to 1“ and F, (n + 1).

In the round-off technique, Y can reconsidered as white noise and ©(Y) = O. Then

inequality (15) becomes

OF,; (n+1)|') <27 O(F; (n+1)) (16)

The result of inequality (16) guarantees the learning capability of the network if
F'(n+ 1) isnot zero, but it does not ensure the same achievement of energy level as
does the infinite weight resolution. As analysis, inequality (16) only guarantees that the
learning in limited weight quantization can be done, given the assumption 8<<W;.The
remaining question is how smalld can be compared to Wi or how can we obtain
information about & through known information? We can observe that the smaller & is,
the closer the reduction between energies in limited weight quantization and infinite

weight resolution is.

Discussi

The conversion between the continuous and the limited weight quantization weight

space requires the scaling factor known as stepsize.  With the fixed weight quantization

levels (2" levels, and B is bit quantization), this stepsize is proportional to the energy

22




reduction level (ignoring the non linear factor which is come from non linear transfer

function). The summarization can be described as follows:

W/,.,, (n+ 1) o< stepsize(n+ 1)

and v'l7,.,'(n + 1) o< F, (n+ 1) (Roughly estimated and ignored the non linear factor)
F,(n + 1) o< AE(n)
Fy(n+ 1) < E(n)

then, stepsize(n+1)e E(n)

Therefore, stepsize(n+1) = o E(n) with o constant

V. Cascade Error Projection Learning Algorithm

The motivation to use the cascade error projection technique is supported by three
reasons:
1. It has fast learning by dividing the network into two independent networks:
a) Stochastic learning network (Master network)
b) Deterministic calculation network (Slave network).
2. It requires very low weight resolution which is easy to implement in hardware.

3. The learning agorithm theory guarantees the learning capability.

Mathematical approach:

23




The energy function is defined:
P m
B+ )= (4 D=~ @ —on) 1Y
p=1 m o=1

The weight updating between the inputs (including previous by expanded inputs) and the

hidden unit is calculated as follows:

JE(n + 1)

Aw? (n+1) = —
Wit D) oWz (it 1) @

and the weight updating between hidden unit h and output unit o is

iiz,’,’f’f frn+1)

w,(n+1)= p;l (b)
PSR FACERVE
p=1

The Cascade Error Projection Learning Algorithm Procedure

1. Start with the network which has input and output neurons. With the given
input and output patterns and hyperbolic transfer function, onc can dctcrminc
the set of weights between input and output by using pseudo-inverse or
perceptron learning. The weight set Wiois thus obtained and frozen.

2. Add ancw hidden unit with a zero weight set for each unit. In each loop
(contains an epoch) an input-output pattern is picked up randomly in the

epoch (no repeated pat tern until every pattern in the epoch is picked). Use

24



the perceptron learning technique Of equation (a) to train Wis(n+1) for 100
loops.

3. Stop the perception training. Calculate the weights W;.(n+)bct ween the
current hidden unit and the output units from equation (b).
Cross-validating the network. If the criteriais satisfied, then stop training,
and test the network. Otherwise, go to 2 until the number of hidden unitsis

more than 20; then give up and quit!

V. Simulation

]n this section, we have selected complex non-linear problems for simulation which are
5- to 8-hit parity problems. In this simulation, there is only one output, therefore, we
can speed up the network by ignoring the derivative of the output transfer function (the
derivative of the output transfer function is always positive, therefore, the reduction of

energy always holds) which is:

P
E(n+1)=Y {f7(n+1)-se’}

p=1

s indicates the aternative sign (+/-) of the error surface to enhance the learning
capability. From equation (2), with CEP learning algorithm the magnitude of the error

£’ isonly amain object to minimize, but the sign of € ? does not affect to the direction

of energy reduction. The equation (2) can rewrite as follows:
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AEG+1D) =Y S er s £r+D) = 3 S Af7 (—e2)(f7 (n+ 1))

p=1 o=1 p=1 o=1
Therefore, the sign s that is used in this simulation does not affect the sign of reduction

energy.

a) ProblemlLv
The problems that are solved in this paper are 5- to 8-bit parity problems for(1) with no
limited weight quantization (The weight resolution is the same as the floating point

machine which is about 32-bit for floating point or 64-bit for double precision); and, (2)

the limited weight quantization from 3-to 6-bits.

b) Parameters

As usual, the learning rate 1 is used and decrease linearly as follows:

nncw .:'nold—_'o:l *no

In simulation, the parameter table below is used

5-bit parity 6-bit parity 7-bit parity 8-bit parity
Floating-point | 1,=1.0 No=1.0 M =0.4 No=04
machine Weight | o =N/A a =N/A a =N/A a =N/A
3-bit Weights N =1.0; No=1.0; n=1.0 M= 1.0;

a =.0024810 a =.016597 a =.008766 a =.004101
4-bit Weights n=1.0; Mo =1.0; No=1.0; n=1.0;

a =.0016467 a =.0108.58 a =.008218 a =.004101
S-bit Weights No=1.0; n=1.0 No=1.0; M=1.0;

a =.0016467 a =.010858 a =.00816.3 a=.004217
6-bit Weights | no=1 . 0; M= 10 m=1.0 n = L0
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o =.0016467 a =.010858 a =.008163 a=.004217

c¢) Conversion technigue (round-off technique)

The updating weight Aw is converted into the available weight quantization which is
Aw*. The conversion can be summarized as follows:

stepsize(n) = aE(n—1)

Aw, wa() Awa ) 5
; *j i ir (—'- (—+ 0.5)) <2%and Aw ,(n)>0
stepsize(n)* int (steps el +05) i (s tepsize(n) .lsr}epsize(n) +0.5)) a w (1)
. . . Aw,(m) . w,m int Aw, (n) .
()= * in(——_ 0. __Ia —— 2 0.9) <-2%and Aw.,
Ay ()= tepsize(r) lm(stepsize(n) 05) if ( stepsize(n) ' (steps ize(n) ) “ Wam <0
0 Otherwise

d) Smulation results:

We are using 5-,6-,7-, and 8-bit parity problems. The input and output highs are 0.8, and

the lows are -0.8. The sigmoid is the hyperbolic tangent function with gain 1/2

(f 0= ll—f —). We use zero initial weights for each problem; therefore, we don’t need
14

to conduct a number of runs for each problem, Each hidden unit required 100 epoch

learning iterations for the weight between the input and the current hidden unit only.
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Figure 3: The chart shows CEP learning capability for 5- to 8-bit
parit y problems. x axis represents limited weight quantization (3-6 and
64-bit) and y axis shows the resulting number of hidden units (limited
to 20). As shown, the lager number of hidden units compensate for the
lower weight precision.
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Figure 4. The figure shows the learning capability of CEP for 5-bit
parity problem. X axis represents number of hidden units used (limited
to 20), and y axis is percentage error. AS shown, even with 3-bit limited
weight quantization the network is able to learn 5-bit parit y problem.
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Figure s: The figure shows the learning capability of CEP for 6-bit
parity problem. x axis represents number of hidden units used (limited
to 20), and y axisis percentage. As shown, even with 3-bit limited
weight quant ization the network is able to lear n 6-bit parity problcm.
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Figure 6: The figure shows the learning capability of CEP for 7-bit
parity problem. X axis represents number of hidden units used (limited
to 20), and y axis is percentage error. AS shown, even with 3-bit limited
weight quanlization the network is able to lear n 7-bit parity problem.
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Figure 7: The figure shows the learning capability of CEP for 8-bit
parity problem. X axis represents number of hidden units used (limited
to 20), and y axisis percentage. As shown, with 3-bit limited weight
quantization the network is unable to lcarn 8-bit parity problem
perfectly, but the network is able to learn with 4-bit weight quantization
perfectly.

VI. Discussion

As our mathematical analysis suggested, the weight set Wi, can be calculated
deterministically by using the pseudo-inverse technique. However, instead of
using the pseudo-inverse technique, perception learning is applied to obtain the
following advantages and disadvantage:

+ A better weight solution set. The network solves the problem directly in non-
linear space with non-linear measurements (input/output data set). In this
approach, the problem is solved in a higher order space, instead of in linear
space (first order) as used in the pseudo-inverse method.

+ A simpler hardware implementation required. With the perception learning

method the analog or digital approach can be easily dorm It has a less stringent
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2)

hardware requirement as compared to that of the pseudo-inverse technique
because perception learning technique is formulated less complicated to
compare with the pseudo-inverse technique.

- Convergence problem. But the perception learning method faces more
uncertainty in convergence than the pseudo-inverse technique. Thisis a trade-
off between the non-linear and linear approach,

From the analysis point of view, there are many ways to obtain the weight set
Wi between the error surface and the output of a new hidden unit by using
maximum correlation, covariant, conjugate gradient, and Newton’s second
order methods. One can investigate the most suitable technique for a particular
application, as well as the resources available.

From Equation (2), we can prove that the neuron transfer function can be
improved by using the non-monotonic function to expand the solution space.
Or, to obtain a simpler mathematical model, a linear transformation can be

used to eliminate the derivative of the output transfer function.

In the analysis of limited weight precision, the given assumption is 6<<Wy. This

assumption is very abstract, but it can vary, based on measured data distribution,

Therefore, there is no determination of &, but it is rather a relative perception of 8. To

obtain & in this paper, smulation is used.

VII. Conclusions

In this paper, we have shown that CEP is feasible for both a software- and a hardware-

based learning algorithm. From this analysis, the way CC works can be understood in
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depth. Moreover, the theoretical analysis provides us with the general framework of the
learning architecture, and the particular learning algorithm can be independently studied
for its suitability in a given application associated with some constraint for each problem.
(For example, in the hardware approach CEP is most advantageous, and for software,
Covariant or Newton's second order method is more advantages). For the CEP learning
algorithm, the advantages can be summarized as follows:

. A fast and reliable learning technique

. An easy implementation in hardware

« A low weight resolution requirement in weight space

A robust model in learning neural networks

Future Research

Future research will be:(a) confirm each learning methods in simulation, (b) address the
more practical problems to test the learning capability techniques as well as the hardware
implementation requirements. We will study the signal-to-noise ratio (SNR), not only in
the synapse, but for the entire network. Finally, we will propose a methodology of
hardware implementation.
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Appendix A:

The energy function of the network can be defined as

E =

L3

(17 —ol)?

P
Er=Y

1 p=lo

h-]
] N
it
i

Assume that the network currently has n hidden units, and the energy no longer improves
with any search techniques (gradient descent search, or exhausted search, etc.). The new
hidden unit is now added to the network. The expected result is

E(n+ 1) <E(n)

This is equivalent to

ii{t;’ —F (nerr + w S+ Dy < {1z =F (net!)?
1

p.—.] o=
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with  of = f(net?)

Expanding and rearranging, we have

S S (1 f (net? +w,, £7 (1 + D) —F (net?)]
[f(net? +w, f;F(n+ 1))+ f(net?)-2171}<0
Assume that w,, f,F(n+ 1) issmall so that

finet? +w, f7 (N +1}=f(net?)+ f'(net?)w, f7 (N +1)

From (i) and (ii), it can be shown that

ii{w,mf'g FP+DIw, 2 fP(n+1)-2(t2 —0f)]1} <0

p=1 o=l

with f'(net})=f'?

or
m P P
D DT+ DF = 2w, D [f'] 7 (n+DefP <0
o=1 p=1 p=1
Appendix B:
From equation (8), it is rewritten:
P
§ =210 = £ (O @) - 17 (9]
i=]
or
P ) _ .
S = ZI{f'h (d‘)fh—l (‘P.))Z _f"zl (C‘){fh_l ((P,) "'fhbl ((P, )}2]
i=1
a) if
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viel.P, [5G 25 @) - 5@ (i)

then
f’ , @)z, ()
P ) .
S2Y 2O @) =17 @) - 1,7 ()]
i=1
but
Vie{l..P), @)Y — 7 @) -1 @) 20
Hence,
$20
b)
If the assumption (iii) is no longer true, then vector I" can be redefined as follows:
Let ol = max{p, i={1..P)

and Ymax of »ld‘plmn)

12 e,

f(f 1((9,:))_ ¢I

and
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I =F,JW,(n+1) =|.

with

q) B e'Yi — e"Y.‘
' eV + e Y

¥ is acomponent i* of F;" (I"") which is a pseudo-inverse solution of " (I")
Obvioudly,

Vl E{],... P}, ‘ y, el_’Ymax"Ymax]
and
ViE{l,... P}, ’Y,‘ e[_,Ymax”Ymaxl

¢: and ; is expanding around zero and can be obtained as follows:
0 =Y, ~ 115+
$ ] 3 i
* * 1 * 3 *
b, =7, —5(7.') +§

with £,€" =0

From equation (8), it can be reduced

S=[f-|r-1"

2 r *\2
=3 070, -0;)
i=]
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Since magnitudes of (y;) and (y; )’are very small to compare with the magnitude of
v, and vy, respective] y, and F' "y and {F' () - F~' (I'* ) } are orthogonal vectors

[Kohonen 1989]. S can be simplified as below:
P * P .2
N =Z'Yi2 - -7’ =Z('Yi)
i=] i=1

Since the approximation is used to simplify S, the sign of S is only interested for this
proof.

Therefore, S 20
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